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I construct on the Lie group R X I f 3  two different families of left-invariant metrics which satisfy the 
Einstein field equations with incoherent matter, calling the Riemannian spaces M 4 ,  obtained this way, 
Class 11 and Class I11 universes. We discuss the geometry of these universes. 

1. INTRODUCTION 

Schucking and I discussed recently1 the physical 
and the geometrical properties of the finite rotating 
universe, the Class I solution, according to the 
terminology introduced by Farnsworth and Kerr.2 
The Class I solution is a family of left-invariant 
metrics on the Lie group R x S3 satisfying Einstein's 
field equations with dust. 

In this paper, I discuss in a similar manner the Class 
I1 and Class I11 universes, which are two different 
families of metrics imposed on the same manifold, 
namely, one the Lie group R x H3. The Class IV 
universes given in Ref. 3 receive their treatment in a 
subsequent paper. The four classes exhaust all the 
possibilities of homogeneous dust solutions of 
Einstein's field equations as Refs. 2 and 3 show. 

In order to keep this paper readable independently 
of Ref. 1, I repeat some general remarks made there 
and suggest that the reader glance at Ref. 1 too. 

2. USEFUL THEOREMS AM) FORMULAS 

As a technical introduction we list some well- 
known theorems and formulas for later use.4 

Given a 4-dimensional manifold M4, we denote the 
vector fields on M4 by X ,  Y,  Z ,  * . and the 1-forms 
by w ,  8, + , . e . .  M4 and the tensor fields can be 
regarded as analytic. The exterior derivative of w is 
given by 

dW(X, Y) = ${Xw( Y )  - Y w ( X )  - o( [ X ,  a)}. (2.1) 

We denote the basis for the vector fields by 

X O Y  XI, x,, x, 
and that for the I-forms by 

wo, w1, w2, w3, 

wa(Xb) = P,. 

VXO(Xb) = rabC xc * 

where 

We introduce an affine connection on M4 by 

The connection form is defined by 

Wab = rcaa oc. (2.6) 

The covariant differentiation V, is a derivation of 
the algebra T(M,) of the tensor fields such that it 
preserves the type of the tensor field and commutes 
with all contractions. The covariant derivative of a 
vector field Y is given by 

v X w )  = wc,~ + r b r u , w c  , (2.7) 

X = P X ,  and Y = qbXb. (2.8) 
where 

The covarient derivative of a I-form is 

U(X,  Y) = (V~W)( Y) = XW( Y) - o(Vx( Y)). (2.9) 

The components of the tensor field U, defined above, 
are given by 

5 U(& x b )  e xau, - r u b c  uc (2.10) 
where 

ub = o(xb). (2.1 1) 

The Lie derivative of Y with respect to Xis  defined by 

- M Y )  = V X ( Y )  - V,(X). (2.12) 

One defines the torsion tensor field by 

T ( X ,  Y )  = V,(Y) - V,(X) - [ X ,  Y] (2.13) 

and the curvature tensor field by 

R(X ,  nz = VXV,(Z) - V,V,(Z) - v[x,y,(z>. 
(2.14) 

The components of T and R are 

T ( x b  3 xo) = Tabc xu 3 R ( X c  7 xd)xb = Rabcd x u  * 

(2.15) 
Cartan's structure equations are 

doa  -maB A UP + &Tu,, CO' A 09, (2.16) 

(2.17) daub = -maB A  UP^ + &Rabpg CO" A wQ. 
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We assume henceforth that 

T = 0, that is, Tabc = 0. (2.18) 

We define the functions 

c a b ,  = - C a c b ,  a, b, c, ' = 0, 1, 2, 3, (2.19) 

by the equations 

IXb 9 Xcl = Cabc X a ;  (2.20) 

then it follows, by using (2.1) and (2.4), that 

dwa = -+Cap, wp A wq 

am"= --( ; rp; - ruD a)wp A U q .  

(2.21) 

and, from (2.16), (2.18) and (2.6), that 

(2.22) 
Therefore 

c a b c  = r b z  - r o b a .  (2.23) 

We introduce a pseudo-Riemannian metric on M4 
by the nondegenerate tensor field 

g w ,  Y )  = g(Y, XI. (2.24) 

It is well known that on a pseudo-Riemannian mani- 
fold there exists one and only one aEne connection 
such that 

T =  0 and V,g = 0, (2.25) 
that is, 

(2.26) 
and 

vx(n - V,(X) = 1x7 Yl 

2g(V,( n. z) = Xg( y, a + Y g V ,  X >  - Zg(X,  Y> 
+ g(Y7 [Z Xl) + g ( Z  [ X ,  YI) 
- g(X7 [Y ,  21). (2.27) 

Suppose that 

g(X,7Xb)=gab=diag(+1, -1, -1, -I), (2.28) 

in other words, 

It follows then that 

g = g a b w a d .  (2.29) 

2g(vXa(Xb)7 X c )  = d X b  7 LXc 7 Xal )  + d X c  7 IXa 7 X b l )  

- g ( X a  7 9 X c l )  (2.30) 

and, using the notation 

rabc = rabd g d c  7 = gadcdbc 7 (2.31) 
we obtain 

rabe = $(cixa + ccab - Cabc)- (2.32) 

Using (2.1) and (2.17), we have 

dwab(Xc  7 X d )  

= $(XCwab(xd) - Xdwab(xc) - Oab(LXc  Y x d l ) )  

-&(wap(xc)w'b(Xd) - wa9(Xd)wpb(Xc))  + tRUbcd 9 

and, therefore, 
Rabcd = rcfa r d b f  - r d f a  r C b f  - r f b a  c f c d  

+ X c r d b a  - X d r c b a .  (2.33) 

It should be noted that the power of the formalism 
developed above lies in the freedom of choice for the 
basis X,, X, ,  X, ,  X3 of the vector fields or wo, wl, 
w2, w3 of the 1-forms, respectively [with the proviso 
(2.4)]. In the following we specialize our manifold 
M4 and make a definite choice for the case most 
adequate for our problem. The steps are as follows: 
Suppose that the functions c a b c  are constants and 
satisfy the Jacobi identities. Then our pseudo- 
Riemannian manifold M4 is a Lie group. Suppose that 
M4 is simply connected. Then it is the universal 
covering group, uniquely defined by the Lie algebra 
(2.20) of the invariant vector fields X ,  , X ,  , X ,  , X,. 
The corresponding left-invariant 1-forms coo, wl, w2, 
o3 satisfy 

dwa = - $ C a b c W b  /I 13' (2.34) 
and characterize M4 equivalently. 

We choose now, for the base of vector fields or of 
the 1 -forms on M4 , the invariant vector fields X ,  , X ,  , 
X,, X 3  or invariant 1-forms coo, wl, 0.9, w3, respec- 
tively. 

The requirement (2.28), that the X,,  X,, X,, X3 
should be pseudo-orthonormal, defines the left- 
invariant metric. Or, equivalently, 

g = g a , w " w b .  (2.35) 
Generally speaking, this choice of base and the 

formalism sketched above allows one to discuss many 
properties of the group or Riemannian space M4 
from a simple knowledge of the constants of structure 
Cabc. We do not have to specialize the coordinates and 
can perform many calculations without an explicit 
knowledge of the left-invariant forms. The most 
important formal consequence of the above choice 
is that the corresponding r's are constants [see (2.32)]. 
But, above all in importance, our results will be 
global results since the theory of Lie groups5 assures 
us that these vector fields and forms exist globally. 
Since the r's are constants, (2.33) reduces to 

~a~~~ = r c f a  rdbf - r d f a  rc2 - r f b a  cf,,. (2.36) 

R,, = ~f~~~ = r f b g  rgcf + cgf, r b c f .  (2.37) 
The components of the Ricci tensor field are 

The field equations are 

G a b  + Agab  = Rab - *Rgab  + &ab = -KPUaUb7 

uaua = 1, (2.38) 

R = Raa. (2.39) 
where 
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After a trivial computation, we obtain 

3. THE GROUP 

Consider a 4-dimensional vector space over the 
field of real numbers. We denote the base vectors by 

e 2 7  (3.1) 

and convert this vector space into an algebra by 
introducing the noncommutative multiplication by 
the following requirements: 

e,e, = epeo = e,, p = 0, 1,2 ,  3, 
elel = -e, , e2e2 = e, , e3e3 = e, , 
e2e3 = -e3e2 = -e, , 
e1e2 = -e2e1 = e3. 

(3.2) 
e3e1 = -e1e3 = e2 , 

We call this algebra Godel's quaternion algebra and 
the vectors 

Godel quaterniom6 
a = apep (3.3) 

Introducing the conjugate quaternion a* by 

a* = de, - de, ,  (3.4) 

we have from (3.2) that 

aa* = [(ao)>" + - (a2)>" - ( ~ ~ ) ~ ] e ,  
= (a">" + (a">" - (a">" - 0 a3 2. (3.5) 

We identified here the subfield aoeO with the real field. 
Consider now the normed Godel quaternions, that 

is, quaternions a satisfying the condition 

aa* = (ao) + - (a2))" - (a3))" = 1. (3.6) 

They obviously form a group with respect to the 
quaternion multiplication. Identifying the vectors 
(3.1) with the unit vectors along the axes in a 4- 
dimensional pseudo-Euclidean space of signature 

+ + - - ,  (3 * 7) 

or Euclidean space of coordinates a,, al ,  a2, a3, 
denoted by E*, we find that (3.6) is the equation of the 
sphere or hyperboloid H3, respectively. The manifold 
H3 with the quaternion multiplication (3.2) is a Lie 
group, which we denote also by H3. 

We want to obtain the left-invariant vector fields 
of H3 in the coordinate system induced by the 
Cartesian coordinates of the imbedding E4. We 
consider, therefore, in the point e, on H3 the three 
vectors 

e, + €ei, i = 1 , 2 , 3 ,  (3.8) 

tangential to H3 and propagate them by the left 
translations over H3 generating the three independent 
left-invariant vector fields mentioned above. Since 

a = ae,, a + cwi = a(eo + €e,), (3.9) 

we obtain 
w i  = ae, (3.10) 

as the vectors at a, corresponding to ei at e,. Defining 
the components eip of w, by 

wi = e,"e,, (3.11) 

we obtain, using (3.10), (2.3),and (3.3), the following 
expressions : 

1 0 3  e,, = (-a , a , a , -a2),  e2p = (a2, a3, a', a'), 

e 3 p  = (a3, -a2, --a1, a'). (3.12) 

Therefore, the invariant vector fields 

(3.13) 

are given by 

Computing the commutator relations, we obtain 

[Ez 9 E31 = -2E1 , [E3 9 El] = 2 4  , [El, E,] = 2E3. 
(3.15) 

Introducing for later use new vector fields 

2 3 ,  X2 = -4E2, (3.16) 0 -  2 1, Xi= --'E X - - L E  

we obtain 

Y X21 = -XO 7 9 = 7 [ X O  9 XI] = X2 * 

(3.17) 

If we represent the unit quaternions 

e,, e , ,  e,, e3 
by the matrices 

respectively, every Godel quaternion 

ape, (3.19) 
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goes over to the matrix 

(3.20) 
-u1 + a2 a0 - a3 

with 
(ao)>" + - (a2)>" - (a3)>" = 1 ,  (3.21) 

and the quaternion muliplication goes over to the 
matrix multiplication. This expresses the well-known 
fact that H3 is isomorphic to SLG(2, R). 

We introduce on H3 a new coordinate system 

xo, XI, x2 (3.22) 

by the substitutions 

u0 = +eh'x2 cos +xo + cosh +xl sin +xO, 
d = &&'x2 sin $xo + cosh +xl cos +xo, 
a2 = +e*"'x2 sin +xo + sinh +xl cos +x", 
a3 = -+e*"'x2 cos +xo + sinh +xl sin +xo. 

(This is a two-parametric family of straight lines on 
P-xo and x1 being the parameters-and x2 is the 
coordinate along the lines.) 

This coordinate system covers H 3  completely. 
The matrix A is given in this coordinate by 

(3.23) 

(3.24) 

The left-invariant 1-forms of a matrix group whose 
general element is given by the matrix A can be 
obtained by computing 

co = A-1 dA. (3.25) 

As shown, for instance, by Flanders,' all matrix 
elements of cc) will be left-invariant 1-forms. Carrying 
out the computation indicated in (3.25), we obtain 

-+ dxo + $ sin xo dxl - e"' cos2 +xO dx2 
-+(cos xo dxl + e"' sin xo dx2) ;i + dxo + + sin xo dxl + e"' sin2 +xo dx2 

. i +(cos x' dxl + e"' sin xo dx2) 
(3.26) 

We select from (3.26) the following left-invariant 
1-forms: 

COO = dxo + e"' dx2, 
w1 = cos xo dxl + e"' sin xo dx2, 
w2 = -sin xo dxl + e"' cos xo dx2 

as the base for the 1-forms on H3. The corresponding 
left-invariant vector fields, serving as the base for the 
vector fields on H3, are given by 

(3.27) 

a 
a X o  

xo=-, 

(3.28) 
These are the vector fields defined by (3.16), written in 
the coordinate system (3.22) as defined by the sub- 
stitutions (3.23), as one can see easily by a straight- 
forward computation. 

We now consider the group 

M 4 = R x H 3 ,  (3.29) 

where the coordinate x3 is introduced on R and 

d x3 = -3. ax (3.30) 

Therefore, the left-invariant vector fields on M4 , 
Xo, 1 1 7  X2, 1 3 ,  (3.31) 

defined by (3.28) and (3.30), can be chosen for the 
base of the vector fields on M 4 ,  and the left-invariant 
1-forms 

COO, c01, CO2, CO3, (3.32) 

defined by (3.27),and 
m3 = dx3 (3.33) 

are the corresponding base for the 1-forms on M 4 .  
The Lie algebra of the left-invariant vector fields on 
M4 is given by 

[XI, X21 = -10, [x2~ x01 = XI, [ ~ O Y  XI] = X Z ,  
[X ,  , X,] = 0,  a = 0, 1 , 2, . (3.34) 

or, correspondingly, 
dwo = A m2, d d  -GO' A COO, 

dm2 = -COO A wl, dw3 = 0. (3.35) 

In the subsequent sections two different pseudo- 
Riemannian metrics, invariant under the left transla- 
tions of the group M4 and satisfying the Einstein 
equations (2.40), are introduced on M4, which is by 
construction simply connected and, therefore, is the 
uniquely defined universal covering group of the Lie 
algebra (3.34). These manifolds are called the Class 
I1 and Class I11 universes. We discuss their properties. 
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4. THE METRIC OF THE CLASS I1 
UNIVERSES 

We construct the metric on Ad4 as follows. We let 

R > 0 and 4 < lkl < (2)-* (4.1) 

be two real parameters and introduce a new basis in 
the Lie algebra (3.34) by the following substitutions: 

2 1 - 2k2' 4k2 1 y -- ~ 

- R ( 4k2 - 1 
xo + - 1 x,. 

R (4k2 - 1)" 

We define the metric on M4 by demanding that 
Yo, Yl , Y2 , Y3 be pseudo-orthonormal, that is, 

g(Y, ,  Yb) = g a b  = diag ( + l ,  -1, -1, -1). (4.3) 

In other words, we define the line element to be 

ds2 = (goy - - (e212  - (e3)2, (4.4) 

where eo, el, 02, €J3 is the basis of the 1-forms, corre- 
sponding to Yo , Yl , Yz , Y3 and given by 

O1 = R[&(1 - k)]'w', 8' = R[&(l + k)]'w2, (4.5) 

e 3 = --(-) R 1 - 2k2 two + 8 
2 4k2 - 1 

1 w3. 
2 (4k2 - 1)' 

After trivial computations we obtain 

ds2 = (+R)'[(l + 2k2)(~O)' - (1 - k)(d) '  
- (1 + k)(d)2 - ( w ~ ) ~  - 2(1 - 2k2) '~o~3] ,  

(4.6) 

where the w's satisfy (3.35) and are given in our 
coordinate system by (3.27). We would like to make 
the following remarks to (4.6). Since the invariant 
vector field X ,  commutes with the other vector fields 
X,  , a = 0, 1 , 2 [see (3.34)], X3 is also a generator of 
M 4 .  Therefore, in a coordinate system where X3 = 
a/ax3, the 0's do not depend on x3 [see (3.27) and 
(3.30)]. But, since X3 is not hypersurface orthogonal, 
we cannot get rid of the "cross terms" in the metric. 
Consider now the vector field K = a/ax2. One sees 
that [K,  X,] = 0, a = 0, 1 ,2 ,  3; and that therefore K 
is also a generator of M 4 ;  consequently, the w's and 
the metric are independent of 2. Since 

g(K,  K )  = (+R)%(2k - cos 2x0)eZs1 > 0 

for 8 < lkl, K is a timelike generator of M4 and 
x2 a timelike coordinate. Therefore, (4.6) in our 
coordinate system exhibits the fact that the metric 
is stationary. But it is not static, since there is 
no hypersurface orthogonal time like Killing vector 
field. 

It will turn out that the vector field Yo is tangent to 
the world lines of the matter. We introduce now new 
coordinates 

20, 21, 22, 2 3  (4.7) 

by the substitutions 

2' = R[*(4k2 - l)]*xO, 2' = xl, 2' = x2, 

z3 = -(1 - 2k2)*x0 + x3 (4.8) 

or 

We see that 

(4.10) 

which shows that the matter is at rest with respect to 
the coordinates (4.7). 

Carrying out straightforward calculations, we find 
that 

wo = I(l-pd.. R 4k2 - 1 + exp (2') dX2, 

cc) 1 = cos L(----r2° 2 d2' 
R 4k2 - 1 

Substituting (4.1 1) into (4.6), we obtain the metric 
in the new coordinate system (4.7). Carrying out 
these computations, we see that the metric has the 
form 

ds2 = (dXO)' + 2pa6ja d2O + gbP6jacijP, 

M, B, 7, . * = 1,2, 3, (4.12) 
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wherep", and gap are functions of Z0 alone and GI, G2, G3 are 1-forms given by 

i -1 + k COS 2X0 k sin 2x0 0 

-(1 - 2k2)* -1 
2X0 k(2k - COS 220) -(I - 2,744 , 

(4.13) 

(4.14) 

and where 

B = [(I - 2k2)/2(1 + 2k2)]' (4.21) = d 9 ,  G2 = exp (9) dZ2, t3 = dZ3, (4.15) 

respectively. The 1-forms (4.15) are the left-invariant 
1-forms of the group of Bianchi type I11 since 

d6' = 0, dG2 = 6' A G2, dG3 = 0, (4.16) 

as one sees immediately. Our solution is, therefore, a 

and 

a -- 
0 - 33.0 ' 

a a 
special case of spatially homogeneous solutions a30 a21 
admitting the group (4.16). + exp (-2') sin go - a an2 ' 

- 
XI = -sin 3' - + cos 3' - 

We introduce now another coordinate system 

30, 9, 32, 3 3  

by the substitutions 

(4.17) 

(4.18) 

a 
a32 

+ exp (-3') cos - 

- a  x3 = - 
a33 

or 
We now introduce a new basis for the Lie algebra 

of the left-invariant vector fields on M4 by the follow- 
ing substitutions : 2(1 + 2k2) 

x3 = $[(I + 2k2)]'Z3. (4.19) 

We will see that Z3 = const are the H 3  hypersurfaces. 
Carrying out these coordinate transformations , we 

obtain from (4.2) the following expressions: 

2, = 2k2 
((4k2 - 1)(1 + 2k2) 

- ((4k2 - 1)(1 + 2k2) 
1 - 2k2 

1 

1 4k2 2 2, = Y', 2, = Y2,  (4.23) 
R 1 + 2 k 2 ( G r Z o  

yo -- 
1 - 2k2 

1 - 2k2 z3 = - ((4k2 - 1)(1 + 2k2) 
(4k2 - 1)(1 + 2k2) 

(4k2 - 1)(1 + 2k2) 
+ 2k2( 

(Tl cos /32 + T3 sin Pi?), 

+ (- TI sin /3x3 + T3 cos @z3), 

2 
R(l - k)* 

2 

r,= 

Y2 = (4.20) Since (4.23) is a Lorentz transformation between the 
Z's  and the Y ' s ,  the metrics defined by 

R(1 + k) 

+ "( R (4k2 - 1)(1 + 2k2) 
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are identical. After obvious substitutions we obtain 
?I 
L z, = XO , 

R(l  + 2k2)* 

(27, cos /3n3 + X, sin /32'), 
2 

R(l - k)' 
z, = 

(4.26) . ,  
z, = (- X, sin P2." + X, cos /3z3)), 

R(l + k)* 
L -  z -- x,, 

, - R  
where /3 and X,, Xl , X, , X, are given by (4.21) and 
(4.22), respectively. The corresponding left-invariant 
1-forms are 

4' = iR(1  + 2k2)*Go, 
4' = iR(1 - k)*(W1 cos PZ3 + d-s in  /3Z3), 
4, = iR(1 + k)'(-G1 sin /3n3 + 6' cos /3R3), 

As the consequence of all that, the line element 

ds2 = (+R)'(l + 2k2)(W0)2 

(4.27) 

4 3  = +B(7j3. 

- (1 - k)(W1 cos P f 3  + W2 sin ,i323)2 
- (1 + k)(-W1 sin /3Z3 + G2 cos PZ3), - (W3), 

(4.28) 

is the same as (4.6) but is in the new coordinate system, 
where Go, 67, W2, O3 are given by 

Go = dZ0 + exp (2l) d 9 ,  
W1 = cos 2, d2l + exp Z1 sin Zo d 3 ,  
W2 = -sin 2, d2l + exp (2,) cos 1, dZ2, (4.29) 

,503 = &3. 

To sum up our findings, we see that we used two 
different bases for the Lie algebra of the left-invariant 
vector fields on M4 , namely, 

yl, y27 '3 (4.30) 
and 

zO, zl, z27 z 3 .  (4.31) 

We shall see in the next section that (4.30) is 
intimately connected with the motion of the matter in 
our solutions. (4.31) is distinguished by the geometry 
of the 3-dimensional hypersurfaces corresponding to 
the normal subgroup H3 of M 4 ,  as we shall see in 
Sec. 6. 

The three different coordinate systems employed 
differ as follows: In (4.6) with the coordinates xo, xl, 
x 2 ,  x3 ,  the x2 lines are the integral curves of the time- 
like generators'of M 4 ;  in (4.12) the 2, lines are the 
world lines of the matter, as we shall see in the next 

section; in (4.28) the 2, lines are perpendicular to the 
3-dimensional hypersurfaces corresponding to the 
normal subgroup. In case of k = 4 we obtain a 
cosmos filled with radiation. 

5. MISCELLANEOUS RESULTS AND THE 
MOTION OF THE MATTER 

Consider the basis Yo , Y, , Y, , Y, defined by (4.2). 
The Lie algebra of M4 is given in this basis by the 
following commutation relations : 

(1 - k2)(4k2 - 1) 

[Y,, yo1 = - 

(5.1) 
2 

[yo, Y3I = 07 

V i 7  &I 1 - 2k2 - - 
(1 - k2)(4k2 - 1) 

(1 - k2)(4k2 - 1) 
[Yz, Y3I = ~ 1 - 2k2 )"Yl. 

Using (2.32), we compute the components of the 
affine connection : 

Po12 = - --( 1 - 2k2 
R (1 - k2)(4k2 - 1) 

1 - 2k2 
(1 - k2)(4k2 - 1) 

(1 - k2)(4k2 - 1) 
(5.2) 

r1zo  = - 

(1 - k2)(4k2 - 1) 
r21o = - 

1 - 2k2 
(1 - k2)(4k2 - 1) 

Using (2.37), we see that the components of the Ricci 
tensor field are given by 

4k2 2(1 - 2k2) R,, = diag - ( R2(1 - k2) ' R2(1 - k2) ' 
2(1 - 2k2) 2(1 - 
R2(1 - k2) ' R2(1 - k2) 
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Comparing with (2.40), we see that we indeed have a 
solution of the field equations, with 

and 
a, = (1,0,0,0) (5.4) 

. (5.5) 
1 -- KP - -(4k2 - I), A = - 

2A R2(1 - k2) 
The meaning of (5.4) is that Yo is the velocity vector 
field of the matter. Since Yo = a/aXo [see (4.10)], it 
follows that in (4.12) the Xo lines are the world lines 
of the matter, as stated earlier. 

In order to investigate the motion of the matter, we 
have to integrate the equationss 

LY,(Y) = VY0(Y) - VY(YO), (5.6) 

Y = qUYu, (5.7) 

where Y is perpendicular to Yo , that is, 

the summation extending over 1, 2, 3. 
The vector Y is a vector perpendicular to a 

particle geodesic, and the tip of its arrow is in the 
neighboring particle geodesic. 

Substituting (5.7) into (5.6), applying the rules of 
the covariant derivation, and introducing the notation 

we obtain the equations 

Using (5.1), we get 

$" = Yoq", 

$" = CU,,q . (5.8) b 

2 
(1 - k2)(4k2 - 1) 

2 v =-- I f k((l - kz)(4kz - 1) 
$3 = 0. 

These equations describe the motion of the matter with 
respect to the 3-dimensional vector frame of the Y,. 
As a consequence of these equations, we have 

(1 + k)$lq1 + (1 - k)$ZqZ = 0, 

and by integration we obtain 

[$/(I - k)3]' + [$/(I + = A', q3 = B,  
(5.10) 

as the equation of the orbit for the neighboring 
particle. The orbits of the particles in the Y, frame 
are, therefore, ellipses in the (Y, , Y,) plane. The main 
axes of the ellipses are in the Y, and Yz directions. 
The axes of the ellipse rotate around Y3 with respect 
to the inertial compass. To see that, we determine the 
motion of the frame Y, along the world lines of the 
matter. Using the formula 

Ya = v,,(Y,) = r,: Y, 

and (5.2), we obtain the equations 

Yo = 0, 
Y ---( 1 - 2k2 

R (1 - k2)(4k2 - 1) 1 -  

(5.11) * 

Y3 = 0. 

The content of these equations is that Y3 is parallel 
propagated along the To lines and Y, and Yz and that 
the axes of the ellipse (5.10) are rotating around Y,  
with respect to the parallel propagated frame.g The 
angular velocity of this rotation is given by 

up frame - - YZ((l - k2)(4k2 - 1) 

This gives a characterization for the frame Y o ,  Y ,  , 
Y,,  Y3 by the motion of the matter. 

Another way to bring Y, , Y,  , Y3 in connection with 
the motion of the matter is to decompose the tensor 
field 

u(x, z) = (v,eo)(z) = xeyz) - eo(v,(z)) 
into symmetric and skew-symmetric parts (eo is the 
covariant tensor field, I-form, corresponding to Yo). 
The components of the tensor field U are given by 

U,, = U(Y,, Tb) = -rubo [see (2.9) and (2.10)]. 

The symmetric part, the tensor of shear 6,  has the 
nonvanishing components 

01, = cr,, = - )". (5.12) 
(1 - k2)(4k2 - 1) 

The skew-symmetric part, the tensor of rotation w ,  
has the nonvanishing components 

w,, = -wz, = 2k2 -( )". (5.13) 
R (1 - kz)(4k2 - 1) 

The nonvanishing component of the rotation vector V ,  
defined by 

V a  = -1 Z q  abcdU n w c d ,  (5.14) 
is given by 7. (5.15) 

v3 = "i R (1 - kz)(4k2 - 1) 
Therefore, writing the tensor fields in contravariant 
form, we obtain 

(1 - kz)(4k2 - 1) 
(5.16) 
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or 

(1 - k2)(4k2 - 1) 
0 24(Y1 + Y,) - 2-4(Y1 - Y,) 

0 2-’(Y, - Y2)]; (5.17) 
* that is, the eigenvalues of 0 are r (5.18) 

(1 - k2)(4k2 - 1) 
and the corresponding eigenvectors are 

2-4( Y, rt Yz). (5.19) 

The vector of rotation is given by 

)3Y3. (5.20) ‘ = $((I - k2)(4k2 - 1) 

For no value of k, + < lkl 52-4,  is the shear or 
rotation vanishing. The Godel cosmos is therefore not 
contained in Class 11. This concludes the characteriza- 
tion of the frame Yo,  Y,, Y,, Y ,  by the motion of 
the matter. 

Using (2.36), we can calculate the components of 
the curvature tensor field and the Weyl tensor field C,  
which turns out to be of Type I and can be given by 
the nonvanishing components 

1.2 
L.lt 

3R2(1 - k2) ’ ‘2323 = -‘lOlO = 

2k2 
3R2(1 - k2)’ ‘3131 = -‘2020 = 

(5.21) 4k2 
3R2(1 - k2) ’ ‘1212 = -‘3030 = - 

c2310 = -c3120 = 2k [+(1 - 2k2)]*, 
J R2(1 - k2) 

defined by 

where 
Cabcd = C(Wa 9 wb > Wc 7 Wd), 

1 2(1 - 2k2) * 
( 4k2- 1 1’ 

(5.22) 

w, = 
(4k2 - 1)* 

w, = 2-’(y, - YZ), W2 = 2-’(Y1 + Yz), (5.23) 
2(1 - 2k2) * 1 

w3=-( 4k2 - 1 ) Y o +  (4k2 - 1)Z 1 y3. 

We notice that the Weyl vector fields W,, W,, W,, 
and W, can be regarded as the eigenvector fields of the 
tensor of shear [see (5.13)]. W, and W, belong to 
the eigenvalue zero. 

6. GEOMETRY OF THE SOLUTION 

Consider the basis Z, , Z, , Z2 , Z, defined by (4.26). 
The Lie algebra of M4 is given in this basis by the 

following commutation relations : 

The first three commutation relations show that 
Z, , 2, , 2, form together the basis of a 3-dimensionz.1 
subalgebra of the Lie algebra of M 4 .  The second three 
commutation relations indicate that the subalgebra is 
an ideal. This ideal generates H3. 

Using (2.32), we compute the components of the 
affine connection 

1 1 + 2k +2k2 
R [(l - k2)(1 + 2k2)]’ ’ 

rlzo = - - 
2(1 - 2k2) (6.2) 

r231 = k((1 - k2)(1 + 2k2) 
1 1 -2k + 2k2 
R [(l - k2)(1 + 2k2)]+ ’ 

rz1o = - 

From (6.2) we can read out a bit of geometry. Since 

it follows that the vector fields Z,, Z,, Z,, Z, are 
geodesic. Denoting Vz3(2,) by 2, , we have 

Vza(za) = z b  0,  a = 0 ,  1, 2, 3, 

2, = 0, 

z, = 0. 
Therefore, it follows that Z, is parallel-propagated 
along the f3 lines and 2, and 2, rotate around 2, 
with respect to the parallel-propagated frame. What 
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I 
I 

I ,  
1 1 - 2k2 -- rolz = - - 
R [(l - k2)(1 + 2k2)]' ' - I  T 

is the geometrical meaning of Z, , Z, , Z, ? These three 
vector fields are tangential to the 3-spaces R3 = const. 
Looking into the geometry of these 3-spaces, we see 
that the components of the affine connection and the 
Ricci tensor field are given by 

\ 
\ 
1 - L  

1 ' 2  I 

P 

I ,' .I- -,,Po 

\ 
I \ 

\ 
\ 
\ 
\ 
\ 
\ 

1 1 - 2k + 2k2 
2 t '  rzol = - - 

R [(I - k2)(1 + 2k )] 
and 

R,, = diag - , \I 
2(1 + 2k + 2k2)(1 - 2k + 2k2) ( R2(1 - k2)(1 + 2k2) \ \ 

\ \ I  2(1 - 2k2)(1 - 2k + 2k2) 

I 
\ I  I 

I \ /  

; PI 
\ /  

I \  I 
I \  I 
/ \  I 
I \  I 

I /  I \  

-I 
/ \  I 

/ I 

[see (2.36)]. These are also independent of R3. 
Introducing the notations 

p ,  = 1 - 12k4, 
p1 = -(1 + 2k - 2k2)' 

= -4[k - +(I + J3)I2[k - +(I - J3)I2, (6.7) 
pz = -(1 - 2k - 2k2)' 

= -4[k + +(l + J3)I2[k + i (1  - J3)I2 

and constructing Fig. 1, we obtain an impression 
about the dependence of (6.6) on the parameter k.  
Changing the sign of k is equivalent to changing the 
one and two directions. po remains unchanged under 
the switch of sign in k. 

The geometric meaning of (6.6) is as follows : R,,,, , 
R20zo, Rolol are the Gaussian curvatures of the 

/ 
R2(1 - k2)(1 + Zk2) 

' 

/I 
1 ,  2(1 - 2k2)(1 + 2k + 2k2) 

We can think of the space-time (4.28) as a 1- 
parametric family of 3-dimensional hypersurfaces- 
R3 being the parameter. These hypersurfaces are 
generated by H3 and all have the geometry of (6.8). 
The R3 lines are perpendicular to these hypersurfaces, 
which are embedded in (4.28) such that the 2, and Z, 
directions rotate around 2, as we move along the R3 
lines. This is the geometrical content of (6.3). The 
j? lines are spacelike; therefore, no physical observer 
can actually move along them. 

It is probably interesting to point out the difference, 
or similarity between the Class I1 and the Class I1 
universes. We can think of the Class I universes as a 
1-parametric family of 3-dimensional hypersurfaces- 
f being the parameter. These hypersurfaces are gener- 
ated by S3, and all have the geometry of 

- -2 \\ 

geodesic surfaces spanned 
ZzZo, and ZJ,  , respectively, 

by the vectors Z&, ds2 = -($R)'[(1 - k)(61)2 + (1 + k ) ( ~ 5 ~ ) ~  
at the point in question. + (1 + 2k3(~3)21. 
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(The range of k is lkl < 4 and 

d61 = - 6 2  A G3, 

d,jj2 = - 6 3  A fi1, 

dfi3 = -fil A 6 2 . )  

f The f lines are perpendicular to these hypersurfaces, 
which are embedded in the Class I universes such that 
the 2, and 2, directions rotate around Z3 as we move 
along the f lines. The f lines are timelike; therefore, 
physical observers can actually move along them. 

We return now to the discussion of the Class I1 
universes. One sees from Fig. 1 that the geometry of 
(6.8) is very simple at 

k = 2-4. 

1 

Our metric is then a special case of Class I11 universes, 
as we shall see later. 

In order to verify our observation at the end of 
Sec. 4, we compute the components of the Ricci tensor 
field with respect to the 2’s.  Using (2.37) and (6.2), 
we obtain the following nonvanishing components: 

2 1 + 4k4 
R2 (1 - k2)(1 + 2k2) ’ 

R - _ -  
00 - 

4k2 [2(1 - 2k2)]+ 
R2 (1 - k2)(1 + 2k2) ’ 

Ro3 = - 

(6.9) 
R - R  2 1 - 2k2 

R2 1 - k2 ’ 11 - 22 - 

4k2 1 - 2k2 R3, = - 
R2 (1 - k2)(1 + 2k2) * 

In the case of k = +, (6.9) takes the form 

Roo = -20/9R2, 
R11 = R22 = 12/9R2, R33 = 4/9R2. (6.10) 

Ro3 = 8/9R2, 

Using (2.40),one sees that the field equations can be 
satisfied by 

u, = (1,090, -11, 
KP = 8/9R2, A = -16/9R2. (6.11) 

Since uau, = 0, one can interpret this model as 
filled with radiation having the energy density p and a 
A term. With these remarks, we close our discussions 
of the Class I1 universes. 

7. THE METRIC OF THE CLASS I11 
UNIVERSES 

be two real parameters and introduce in the Lie 
algebra (3.34) a new basis by 

Yo = (BKP)+XO, 
Yl = (+KP)4[21(1 + S)l+Xl, 
Y, = ($KP)+[2/(1 - S)]4X2, 
Y3 = (BKP)*X3, 

(7.2) 

and we define the metric on M4 by demanding that 
Yo, Y, , Y2 , Y3 be pseudo-orthonormal, that is, that 

g(Y,, Y b )  = g a b  = diag (+I ,  -1, - 1 ,  -1). (7.3) 
In other words, we define the line element to be 

dS2 = (coy - (ey - (e212 - ( e 3 ) 2 ,  (7.4) 

where eo, el, 02, O3 form the corresponding basis of 
the left-invariant 1-forms, that is, 

e o  = (2/Kp)+wo, 
e1 = (2/Kp)t[+(1 +  hi, 

e 3  = (2/Kp)+w3. 
e 2  = (2/Kp)t[g(i - S)]*w2, (7.5) 

After trivial substitutions, we obtain 

dS2 = (2/Kp)[(c0°)2 - *(I + S)(d)’ 
- +(I - S)(w2)2 - (w3)27y (7.6) 

where the w’s satisfy (3.35) and, if we use the coorci- 
nate system introduced before, can be given by (3.27) 
and (3.33). All the physical and geometrical investiga- 
tion can be carried out in the frame of the Y’s given 
by (7.2) and in the coordinate system introduced in 
Sec. 3, since the two different frames and the three 
different coordinate systems introduced in the case of 
the Class I1 universes coincide here, due to the 
simplicity of the line element (7.6). 

At s = 0 we have the Godel cosmos as we see in 
Sec. 8. 

8. MISCELLANEOUS RESULTS AND THE 
MOTION OF THE MATTER 

Consider the basis Yo, Yl , Y, , Y3 defined by (7.2). 
The Lie algebra of M4 is given in this basis by the 
following commutation relations : 

We consider the Lie group R x H3 as before and 4 1 - s  

( 1 - s )  
p > 0 and Is1 < 1 (7.1) [Y,, Y3] = 0, a = 0, 1, 2. 

2 t y2, [Yo9 YlI = (+.PI impose on it another metric as follows. Let 
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Using (2.32), we compute the components of the 
affine connection 

ro12 = 0, 

Using (2.37), we find that the only nonvanishing 
component of the Ricci tensor field is given by 

Roo = -KP. (8.3) 

A = -&KP (8.4) 

(8.5) 

Comparing this with (2.40), we see that 

and 
ua = (1, 0 ,  0,O). 

The meaning of (8.5) is that Yo is the velocity vector 
field of the matter. Since Yo = (&~p)*a/axO, the 
t = (2/~p)*xO-lines are the world lines of the matter. 

In order to investigate the motion of the matter, 
we have to integrate Eqs. (5.6). Repeating the same 
reasoning as in Sec. 5 and using the same notations 
we find that the equations 

4 3  = 0 
describe the motion of the matter with respect to the 
3-dimensional vector frame Y, , Y,, Y3.  The orbits 
of the neighboring particles are given by 

which are ellipses in the Yl , Y2 plane. The main axes 
of the ellipse lie in the Yl and Yz directions. 

The axes of the ellipse do not rotate, since from 
the equations 

f a  vp,(ya) = Y b  

and from (8.2) it follows that 
Yo = 0,  Yl = 0, Y2 = 0,  Y3 = 0. 

Therefore the frame Yl , Y2 , Y3 is parallel-propagated 
along the xo lines and can therefore be chosen as the 
inertial compass. This gives a characterization for the 
frame Yo,  Y, , Y2 , Y3 by the motion of the matter. 

Another way to bring Y, , Y2 , Y3 in connection with 
the motion of the matter is to compute the tensor of 
shear and the vector of rotation. Along the lines 
explained in Sec. 5 and using the same notation, we 

find that 
0 = (&.p)*s( 1 - s2)-+[2-h( Y, + Y2) 0 2-+( Yl + Y,) 

f ($KP)b(l - S2)-+ 

- 2-4(Y1 - Ya) O 2-*(Y1 - YZ)], (8.8) 

(8 9) 
that is, the eigenvalues of 0 are 

and the corresponding eigenvectors are 
2 4 ( Y ,  f Y2). (8.10) 

The vector of rotation is given by 
v = - (&KP)*S( 1 - s2)-+ y3. (8.1 1) 

The shear is vanishing for s = 0; therefore, we have 
the Godel cosmos at this value of the parameter s as 
we already stated at the end of Sec. 7 .  

This concludes the characterization of the frame 
Yo, Yl , T2,  Y3 by the motion of the matter. 

Using (2.36), (2.37), (2.39) and the formulas 
= Rabed - Eabcd - h R g a b c d  Y 

where 
EabGd = &(sadgbc - sacgbc + gadsbc - gacsbd), 

= Rab - t R g a b  ? (8.12) 
and 

we can calculate the coniponents of the Weyl tensor 
field. The nonvanishing components are 

gabcd = gadgbc  - gacgbd 3 

c2323 = - c l O I O  = *Kp, c3131 = -CEO20 = iKP, 
c1212 = -c3030 = -*Kp* 

This is a type I e2 Weyl tensorlo (type D) and Yo,  Yl , 
Y,, Y3 are the Weyl vectors. We can give for (7.6) a 
similar descriptionas we gave to (4.28) toward the end 
of Sec. 6 .  

We can think of the space-time (7.6) as a l-para- 
metric family of 3-dimensional hypersurfaces-x3 being 
the parameter. These hypersurfaces are generated by 
H3,  and all have the same geometry. The x3 lines are 
perpendicular to these hypersurfaces, which are 
embedded in (7.6) such that Zo,  2, , 2, are parallelly 
propagated along the x3 lines. The x3 jines are 
spacelike. 

From this, one sees that (7.6) is intrinsically similar 
than (4.28). One can use these models to study the 
motion of rotation within the general theory of 
relativity. 

In a forthcoming paper, we discuss singularly the 
Class IV universes which then exhaust all the possi- 
bilities for homogeneous universes with dust within 
the framework of general relativity. 
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